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We develop a theory of parametric excitation of weakly nonlinear standing gravity waves in a tank, which
is under vertical vibrations with a slowly time-dependent �“chirped”� vibration frequency. We show that, by
using a negative chirp, one can excite a steadily growing wave via parametric autoresonance. The method of
averaging is employed to derive the governing equations for the primary mode. These equations are solved
analytically and numerically, for typical initial conditions, for both inviscid and weakly viscous fluids. It is
shown that, when passing through resonance, capture into resonance always occurs when the chirp rate is
sufficiently small. The critical chirp rate, above which breakdown of autoresonance occurs, is found for
different initial conditions. The autoresonance excitation is expected to terminate at large amplitudes, when the
underlying constant-frequency system ceases to exhibit a nontrivial stable fixed point.
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I. INTRODUCTION

There are two ways of driving a classical nonlinear oscil-
lator by a small oscillating force: via either external or para-
metric resonance. In both cases, the initial growth of the
amplitude of the oscillator is arrested, even without dissipa-
tion, when nonlinear effects come into play. This is due to
the fact that the natural frequency of a nonlinear oscillator is
amplitude dependent, so a mismatch between the �invariable�
driving frequency and the natural frequency appears �1�.

To overcome the nonlinear mismatch and maintain phase
locking between the driving force and the oscillator, one can
slowly vary the driving frequency with time so as to achieve
a persistent growth of the oscillations. This simple and ver-
satile method is called autoresonance: either external, or
parametric. To emphasize the difference between the two, let
us watch a child on a swing. When a parent pushes the swing
�once in each cycle�, he gradually increases the time interval
between the pushes as the swing amplitude grows. Here he
employs external autoresonance. On the contrary, when the
child swings himself �he achieves it by moving the position
of his center-of-mass up and down twice in each cycle�, he
gradually increases the period of these modulations as the
swing amplitude grows. This is parametric autoresonance.

The simple model of a nonlinear oscillator, excited via
external autoresonance, has found numerous applications in
physics, see, e.g., Ref. �2� for a brief review. The external
autoresonance scheme has been also generalized to systems
with an infinite number of degrees of freedom, such as non-
linear waves �3–5� and vortices �6�. In contrast to the exter-
nal autoresonance, parametric autoresonance has received
much less attention �7�. In this work we generalize to non-
linear waves the theory, developed in Ref. �7� for a nonlinear
oscillator. Specifically, we show that the parametric autoreso-
nance mechanism can be used for driving nonlinear standing
gravity waves with a steadily growing amplitude on a free
surface of a fluid.

Michael Faraday �8� was the first to observe that, when a
tank containing a fluid is periodically vibrated in the vertical
direction, a standing wave pattern forms at the free surface of
the fluid when the vibration frequency is twice the frequency

of the surface vibrations. This phenomenon is a classic ex-
ample of parametric resonance, because the vertical accelera-
tion of the tank—an intrinsic parameter of the system—
depends on time via the periodic vibration. Lord Rayleigh
�9� carried out a further series of experiments, which sup-
ported Faraday’s observations, and also developed a linear
theory for these waves in terms of a linear Mathieu equation.
Benjamin and Ursell �10� advanced the linear theory further.
Subsequently, Miles �11–13�, Douady �14�, Milner �15�, and
Decent and Craik �16� formulated a weakly nonlinear theory
based on amplitude expansion, while some of these and in-
deed numerous other works dealt with experimental studies
of Faraday waves.

Being interested in parametric autoresonance, we add a
new dimension to the problem of Faraday waves and inves-
tigate weakly nonlinear standing gravity waves formed when
the vibration frequency is slowly decreased �chirped down-
wards� in time. We show that the negative frequency chirp
causes a persistent growth of the wave amplitude. As in other
instances of autoresonance, the exact form of the frequency
chirp is unimportant once the chirp sign is correct, and the
chirp rate is not too high. The autoresonance excitation is
expected to terminate at large amplitudes, when an underly-
ing dynamical system, corresponding to the case of a con-
stant frequency, ceases to exhibit a nontrivial stable fixed
point.

Here is the layout of the rest of the paper. Section II
presents a brief overview of theory of weakly nonlinear Far-
aday waves with a constant driving frequency. Sections III
and IV deal with theory of chirped Faraday waves, in invis-
cid �Sec. III� and low viscosity �Sec. IV� fluids. Section V
presents a brief discussion of our results.

II. WEAKLY NONLINEAR FARADAY WAVES

A. Inviscid fluid

To set the stage for a theory of chirped Faraday waves, we
need to briefly review the theory of weakly nonlinear Fara-
day waves with a constant driving frequency. Consider a
quasi-two-dimensional rectangular tank with a fluid of length

PHYSICAL REVIEW E 72, 016310 �2005�

1539-3755/2005/72�1�/016310�13�/$23.00 ©2005 The American Physical Society016310-1

http://dx.doi.org/10.1103/PhysRevE.72.016310


l, width w, and depth h, so that l�w. We assume that the
elevation of the fluid, caused by the wave, depends only on
the longitudinal coordinate x and time t, so that we have a
quasi-two-dimensional flow in the xz plane �z is the vertical
coordinate�. The unperturbed level of the fluid is at z=0. The
vertical displacement of the vibrating tank is described by
the equation

��t� = a0cos�2�t� . �1�

We assume weak forcing, that is the vibration acceleration is
much less than the gravity acceleration g, and introduce a
small dimensionless parameter �:

� =
�2a0

g
� 1. �2�

In the limit of inviscid fluid the flow remains potential once
it is potential at t=0, and the external forces are potential
�17�, as is the case here. The assumption of a potential flow
is also approximately valid in a low-viscosity fluid �10�. We
also assume that the wavelength of the standing wave is
much larger than the capillary length of the fluid and neglect
the capillary effects throughout the paper. The linear disper-
sion relation for the wave is �n

2=gkntanh�knh�, where �n is
the natural frequency of the nth mode, kn=2� /	n=n� / l is
the wave number of the nth mode, and n=1,2,… .

The governing equations for the velocity potential

�x ,z , t� and the wave profile ��x , t� are �10,17–19�

�2
 = 0, �3�

��
t +
1

2
�
x

2 + 
z
2� + �g + �̈����

z=�

= 0, �4�

��t + 
x�x − 
z��z=� = 0, �5�


z�z=−h = 0, �6�

where indices denote partial derivatives. The Laplace’s equa-
tion �3� describes a potential flow of an incompressible fluid.
Equations �4� and �5� are the Navier-Stokes equation and the
kinematic boundary condition, respectively, evaluated at the
free surface. Finally, Eq. �6� is the boundary condition for the
vertical velocity component at the bottom of the tank.

Let the vibration frequency be close to twice the natural
frequency of the primary mode n=1, i.e., �	�1, so that this
mode is excited via parametric resonance. In a weakly non-
linear regime it suffices to account for the excitation of only
one higher order mode: the secondary mode n=2, which is
enslaved to the primary mode �12�. Therefore, one should
look for 
�x ,z , t� and ��x , t� in Eqs. �3�–�6� in the following
form �11,12�:


�x,z,t� = 
0�t� + 
1�t��1�x�
cosh�k1�z + h��

cosh�k1h�

+ 
2�t��2�x�
cosh�k2�z + h��

cosh�k2h�
+ ¯ ,

��x,t� = �1�t��1�x� + �2�t��2�x� + ¯ , �7�

where the eigenfunctions �n�x�=
2 cos�knx�. The higher or-
der terms will be neglected in the following. In the deep-
water limit knh�1, the linear dispersion relation for the
wave becomes �n

2	gkn. For this approximation to hold with
an error less than 0.5%, it suffices to demand that h l.

The perturbation theory we are using employs the small-
ness of �. As will be seen later, this smallness implies a
smallness of the wave amplitude compared with the wave-
length, so that the dimensionless parameter �=k1� is small.
Expanding 
�x ,z=� , t� in the vicinity of the unperturbed
surface z=0 in a power series in �, and substituting it and the
second of Eqs. �7� into Eqs. �4� and �5�, we obtain in the
leading and subleading orders of �:

�2�t� 	
k1�1

2�t�

2

, �8�


0�t� 	 − �̇1�1, 
1�t� 	
�̇1

k1
, 
2�t� 	 0. �9�

As we see, the next-order corrections 
0 and �2 are enslaved
to the primary mode, and their magnitudes are O���1�. In
addition, we obtain a nonlinear differential equation of the
second-order for the time-dependent amplitude of the pri-
mary mode �1�t�:

�̈1 +
1

2
k1

2�5�̇1
2�1 − 3�1

2�1
3� + �1

2�1 + 4� cos�2�t���1 = 0,

�10�

where we have used Eq. �1� and kept terms up to O��3�.
Equation �10� is a generalization of the linear Mathieu equa-
tion �20�.

Now we employ the method of averaging �20�. We
make an ansatz �1�t�=A1�t�cos��1t+�1�t�� and �̇1�t�
=−�1A1�t�sin��1t+�1�t�� in Eq. �10� and treat the amplitude
A1�t� and phase �1�t� as slow functions of time. �Being in-
terested in the first-order equations with respect to �, one can
omit higher temporal harmonics in �1�t� �20,21�.� Let �
=�1−� be the �small� detuning from the exact linear reso-
nance. Then, for ��1 and �����1, we can perform averag-
ing over the fast time ��1

−1 �20�. Introducing a new phase
variable �=� · t+�1, we obtain

Ȧ1 = ��1A1sin�2�� ,

�̇ = ��1cos�2�� −
k1

2A1
2�1

4
+ � . �11�

The second term in the right side of the equation for �̇ de-
scribes the nonlinear frequency shift of the standing wave.
One can see that, as the wave amplitude grows, its frequency
goes down �22,32,33�. This fact is important in the autoreso-
nance excitation scheme introduced below. Rescaling time,
amplitude, and detuning,
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� = ��1t, B =
k1

2
�
A1, � =

�

��1
, �12�

we rewrite Eqs. �11� in a scaled form

Ḃ = B sin�2�� ,

�̇ = cos�2�� − B2 + � , �13�

where the time derivatives are taken with respect to the slow
time �. When ��O�1�, the typical value of B �for example,
the stable fixed point, see below� is O�1�. Going back to Eq.
�12�, we see that, in the dimensional units, the parameter
k1A1��1/2�1. As in the leading order �	k1A1, this vali-
dates our assumption that ��1.

Equations �13� describe weakly nonlinear constant-
frequency Faraday waves in the leading order in �. In the
context of Faraday waves, Eqs. �13� were first obtained by
Miles �11,12�, though he derived them in a different way,
working with the Lagrangian of the fluid. In the subleading
order in �, additional nonlinear terms appear �13–16�, which
will not be considered here.

Equations �13� can be rewritten in a Hamiltonian form if
we introduce the action and angle variables I=B2 /2 and �:

İ = −
�H

��
= 2I sin�2�� ,

�̇ =
�H

�I
= cos�2�� − 2I + � , �14�

where the Hamilton’s function is

H�I,�� = I cos�2�� − I2 + �I . �15�

The fixed points of this dynamical system are determined
by the value of the scaled detuning � �20,23�.

�a� ��−1. No fixed points.
�b� −1���1. Three fixed points: an elliptic point

�I* ,�*�= ��1+�� /2 ,0� and two saddle points �I* ,�*�
= �0, ±arccos�−�� /2�.

�c� �1. Two fixed points: the same elliptic point
�I* ,�*�= ��1+�� /2 ,0� as in case �b�, and a saddle point
�I* ,�*�= ���−1� /2 ,� /2�.
Figure 1 shows the phase plane �� , I� in the cases of 0��
�1 and �1. The phase portrait is periodic in � with pe-
riod �. In the case of 0���1, the separatrix is formed by
the curve I=�+cos�2�� and the straight line I=0. In the case
of �1, the separatrix is formed by the curves I
= �cos�2��+�−
�� /2 and I= �cos�2��+�+
�� /2, where
�=cos2�2��+2� cos�2��+2�−1.

As the Hamilton’s function �15� is a constant of motion,
the system is integrable. In particular, one can find the “non-
linear period”: the period of motion along a closed trajectory
in the phase plane. Denoting the constant Hamilton’s func-
tion as H0, we obtain

Tnl = 2�
�−

�+ d�

�� + cos�2���2 − 4H0�1/2 , �16�

where �±= ±arccos�2
H0−�� /2. For a zero detuning, and
initial conditions very close to the fixed point I*=1/2 and
�*=0 �so that H0	1/4�, we obtain T	�. This corresponds
to small harmonic oscillations around the elliptic fixed point.
In the physical units the period of small oscillations is Tnl

ph

	� / ���1�, that is much longer than the wave period.

B. Low-viscosity fluid

Taking into account a weak damping of the wave amounts
to adding a linear damping term 2��̇1 to the left side of Eq.
�10�, where � is defined in terms of the rate of loss of me-
chanical energy due to dissipation �18�. The incorporation of
only a linear damping term requires that � /�1�1, so that
the damping is treated perturbatively. The specific damping
mechanisms which contribute to the value of damping rate �
are the bulk viscosity �18�, dissipation in the vicinity of the
fixed walls �24�, dissipation at the free surface �especially if
contaminated� �24� and contact line damping �25� �see, e.g.,
Ref. �25� for a review�. In practice, one can interpret the
damping rate as a phenomenological term, and determine it
from a comparison with experiment.

Including the linear damping term in the first of Eqs. �13�,
we obtain

FIG. 1. The phase portrait of the inviscid constant-frequency
system �14� with detuning �=0.5 �a� and �=2 �b�. Phase locking
occurs inside the regions limited by the separatrix �denoted by the
thick line�. The saddle points are �I* ,�*�= �0, ±arccos�−� /2�� in
case �a� and �1/2 , ±� /2� in case �b�. The phase portrait is periodic
in � with period �.
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Ḃ = B sin�2�� − �B ,

�̇ = cos�2�� − B2 + � , �17�

where �=� / ���1�0 is a dimensionless damping rate. It
follows from the first of Eqs. �17�, that nontrivial fixed points
B*�0 can exist only when ��1, that is for a small enough
viscosity. In this case, any trajectory on the phase plane of
the system �except for trajectories with a zero measure� con-
verges to a stable focus, see Fig. 2. This is in contrast to the
inviscid case, where starting from initial conditions outside
the separatrix leaves the trajectory phase unlocked. The fixed
points �B* ,�*� of Eqs. �17� are determined by the values of
� and �. Since Eqs. �17� �and Eqs. �13�� are invariant under
the transformation B→−B, one needs to consider only fixed
points with positive amplitudes. Let �=
1−�2 and �
=
1−�2. Let us also denote the critical damping rate

�cr = �4

5
−

8�

25
�� −
�2 +

5

4
��1/2

, �18�

which will appear shortly. There are four different cases.

�a� ��−1. No fixed points.
�b� −1���0. For �� , �0,arccos�−�� /2� is a

stable node, and �0,−arccos�−�� /2� is a saddle point. For
0���� , �0, ±arccos�−�� /2� are two saddle points, and
���+��1/2 , arcsin��� /2� is a stable fixed point. For 0��
��cr it is a stable focus, while for �cr���� it is a stable
node.

�c� 0���1. For ��1, �0,arccos�−�� /2� is a stable
node, and �0,−arccos�−�� /2� is a saddle point. For ���
�1, �0,arccos�−�� /2� is a stable node, �0,−arccos�−�� /2�
and ���−��1/2 ,� /2−arcsin��� /2� are two saddle points, and
���+��1/2 , arcsin��� /2� is a stable fixed point. For ���
��cr it is a stable focus, while for �cr���1 it is a stable
node. For 0���� , �0, ±arccos�−�� /2� are two saddle
points, and ���+��1/2 , arcsin��� /2� is a stable focus.

�d� ��1. For 0���1, ���+��1/2 , arcsin��� /2� is a
stable fixed point. For 0����cr it is a stable focus, while
for �cr���1 it is a stable node, and ���−��1/2 ,� /2
−arcsin��� /2� is a saddle point.
Figure 3 shows two characteristic values of the scaled damp-
ing � as functions of �. The first one is �cr from Eq. �18�.
The second one is the maximum value of � for which a
nontrivial stable fixed point still exists. For −1���0 this
maximum value is equal to 
1−�2, while for ��0 it is
equal to 1. To conclude the brief review of the constant-
frequency theory, we notice that the dependence of B* on �
exhibits a pitchfork bifurcation. Figure 4 shows the bifurca-
tion diagram in case �c� for �=0.5.

III. CHIRPED FARADAY WAVES IN AN INVISCID FLUID

A. Governing equations, phase portrait, criteria,
and numerical examples

Now let the vibration frequency be time-dependent
�chirped�: �=��t�. In general, the dimensionless parameter
�=�2a0 /g will also become time dependent. For simplicity,

FIG. 2. The phase portrait of the constant-frequency system �17�
with a zero detuning and scaled damping rate �=0.2. The thick
lines mark the separatrices, which pass through the saddle points
�B* ,�*�= �0, ±� /4�. The phase portrait is periodic in � with period
�.

FIG. 3. The solid line shows the critical scaled damping rate �cr

as a function of the scaled detuning � �Eq. �18��. For ��cr �the
overdamped case� a stable node is obtained, while for ���cr a
stable focus is obtained. The dashed line shows the maximum value
of � for which a nontrivial stable fixed point still exists. �cr is
always below this maximum value.

FIG. 4. A combined bifurcation diagram of the constant-
frequency system �17�. Shown is the fixed-point amplitude B* ver-
sus � for �=0.5. The solid line shows the stable focus or stable
node �depending on ��, the dashed line shows the stable node and
the saddle point �as described in case �c��, and the dotted lines show
the unstable fixed points �saddle points and unstable focus�. The
bifurcation occurs at �=
1−�2, where the stable node �B* ,�*�
= �0, �1/2�arccos�−��� becomes a saddle point. In the region

1−�2���1 both the stable focus, and the stable node exist.
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we shall assume that a0 also varies in time so that �=const
�26�. Our objective is to keep a Faraday wave close to reso-
nance in spite of its nonlinear frequency shift, so as to
achieve a persistent growth of the wave amplitude. As in
other autoresonance schemes, the exact form of the function
��t� is unimportant if this function satisfies three criteria.

�1� The chirp sign coincides with the sign of the nonlin-
ear frequency shift of the wave. For the standing Faraday
waves ��t� should decrease for the wave amplitude to in-
crease.

�2� The frequency chirp rate must be sufficiently small,
so that the phase portrait of the system evolves adiabatically:
��̇�t��Tnl���t�, where Tnl is the characteristic nonlinear pe-
riod, see Eq. �16�.

�3� The dynamic frequency mismatch, which we define
as the absolute value of the increment of the vibration fre-
quency during one nonlinear period ���t+Tnl�−��t�� should
be small compared with the inverse nonlinear period Tnl

−1. In
physical units, this yields � / ���1�2�1.

Criteria 1 and 2 have appeared in previous works on au-
toresonance �2�, while criterion 3 is new. We shall see shortly
that, in the problem of parametric autoresonance, criterion 3
is more restrictive than criterion 2.

The derivation of the equation of motion for the primary
mode amplitude, for a slowly time-dependent driving fre-
quency, goes along the same lines as in the case of a constant
driving frequency. The resulting equation is �compare with
Eq. �10��

�̈1 +
1

2
k1

2�5�̇1
2�1 − 3�1

2�1
3� + �1

21 + 4� cos�2��t����1 = 0,

�19�

where ��t�=�0
t ��t��dt�. If � is small, and the chirp rate is

slow on the time scale of the wave period, one can again use,
close to the parametric resonance, the method of averaging
�7�. For concreteness, we assume in this work a constant
chirp rate �:

��t� = �1 − �t �20�

so that ��t�=�1t−�t2 /2. Introducing a scaled chirp rate m
=� / ��1��2, and the same scaled time � and amplitude B as
before �see Eq. �12��, we arrive at the following scaled equa-
tions:

Ḃ = B sin�2�� ,

�̇ = cos�2�� − B2 + m� , �21�

where now ��t�=�t2 /2+�1�t�, and the differentiation is
done with respect to �. In the action-angle variables we ob-
tain

İ = 2I sin�2�� ,

�̇ = cos�2�� − 2I + m� . �22�

Once B�t� and ��t� are found, one can immediately recon-
struct the standing way profile ��x , t� by using the ansatz

�1�t�=A1�t�cos��1t+�1�t�� and the “enslaving relation” �8�
in the second of equations �7�. Therefore, in the rest of the
paper we shall focus on Eqs. �22� which coincide, up to
notation, with those obtained by Khain and Meerson �7�,
who investigated parametric autoresonance in a nonlinear os-
cillator. Equations similar to �22� also appear in the problem
of the second-harmonic autoresonance in an externally
driven oscillator �27�.

The Hamilton’s function of the system �22� is time depen-
dent:

H�I,�� = I cos�2�� − I2 + m�I , �23�

so H is not a constant of motion anymore. In the following
we shall use t for the slow time �.

Figure 5 shows an example of parametric autoresonance:
a persistent phase locking and a systematic growth of I with
time, with some oscillations on top of the systematic growth.
Here the scaled chirp rate m is less than some critical value
mcr for these initial conditions. Figure 6 illustrates break-
down of autoresonance, observed when mmcr. As in other
instances of autoresonance, a theory of parametric autoreso-
nance appeals to the constant-frequency theory. Comparing
Eqs. �14� and �22�, one can see that the term mt plays the
role of an effective �time-dependent� detuning. Therefore,
when the chirp rate is small, m�1, the phase portrait of the
system almost coincides with that of the autonomous equa-
tions �14� �see Fig. 1�, except that now it changes with time

FIG. 5. Parametric autoresonance in an inviscid fluid. Shown are
the action I �a� and the phase � �b� as functions of time. The
parameters are m=0.2, I�0�=0.4, ��0�=0, and a zero initial detun-
ing. The solid lines show numerical solutions. The dashed lines
show the trends I*�t�, given by Eq. �24� �a� and �*�t�, given by Eq.
�25� �b�.
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according to the current value of the effective detuning. The
change of the phase portrait is adiabatically slow, except at
times t	−1/m and 1/m �corresponding to �=−1 and 1, re-
spectively�, when bifurcations occur. One consequence of the
adiabatic evolution is that Eqs. �22� have “quasifixed” points.
The most important stable quasifixed point �I*�t� ,�*�t�� can
be found by assuming that �*�t��1, and that it varies with
time slowly. Then the second of Eqs. �22� yields, in the lead-
ing order,

I* 	
1

2
�1 + mt� . �24�

Substituting this into the first of Eqs. �22�, we obtain

�* 	
m

4�1 + mt�
. �25�

The stable quasifixed point, or trends �24� and �25�, previ-
ously found by Khain and Meerson �7� �see also Ref. �27��,
are the essence of parametric autoresonance. Shown in Fig. 5
are I�t� and ��t� found numerically, and the trends �24� and
�25�. The trend �24� corresponds to a steady growth of the
wave amplitude B*�t�= �2I*�t��1/2	�mt+1�1/2. The important
phase trend �25� was overlooked in Ref. �27�. Notice that, at
scaled time t�1, the phase trend �*	1/ �4t� becomes inde-
pendent of the chirp rate m. Importantly, for the expressions
�24� and �25� to be valid, one can either demand m�1, or go
to long times: t�1. Therefore, the stable quasifixed point
keeps its meaning, at long times, even at finite �nonsmall� m.

We found that, surprisingly, unstable quasifixed points of
the chirped system also play an important role in the dynam-
ics. The unstable points are analogs of the constant-
frequency saddle points discussed in the previous section
�see the text following Eq. �15��. To find the locations of the
unstable quasifixed points in the leading order, one can sim-
ply replace the detuning � by mt. Therefore, on the time
interval 0� t�1/m, there are two saddle quasifixed points
�I* ,�*�	�0, ± �1/2�arccos�−mt��. These points disappear at
t	1/m, and a new saddle points appears: �I* ,�*�	��mt
−1� /2 ,� /2�. These expressions �including the boundaries of
the corresponding time intervals� are valid in the leading

order in m�1. Higher-order corrections can be also calcu-
lated.

Now we are in a position to discuss criteria 2 and 3 for
parametric autoresonance in this system. For a constant chirp
rate � �see Eq. �20��, criterion 2 can be written, in the physi-
cal units, as �����−1��, or ����2. Now, the dynamic
frequency mismatch, acquired by the chirped system during
time Tnl, can be estimated as �Tnl�� / ����. Criterion 3 de-
mands that this quantity be small compared to Tnl

−1���,
which yields ���2�2. As � is small, criterion 3 is more
restrictive than criterion 2. In the scaled variables, criterion 3
has the form of m�1, as can be expected from the form of
scaled Eqs. �22�. The inequalities here are written up to nu-
merical factors which depend on the initial conditions, see
below.

One more convenient description of the chirped system
can be achieved if we rewrite Eqs. �22� as a second order
equation for the phase

�̈ + 2mt sin�2�� + sin�4�� − m = 0 �26�

or

�̈ +
�V��,t�

��
= 0, �27�

where we have introduced a time-dependent potential

V��,t� = −
1

4
cos�4�� − mt cos�2�� − m� . �28�

This suggests new canonical variables � and u=cos�2��
−2I+mt, so that in the new time-dependent Hamiltonian
H�� ,u , t�=u2 /2+V�� , t�, there is a clear separation between
the potential energy and the kinetic energy. The new Hamil-
tonian describes a “particle” of a unit mass and velocity u
= �̇, moving in a time-dependent potential V. This picture is
useful for a qualitative analysis of the dynamics of the “par-
ticle” when m is small, so the potential slowly varies in time,
see Fig. 7. In the variables u ,� the stable quasifixed point
becomes �approximately� �0, �m /4��1+mt�−1�, while the
saddle points are �0, ± �1/2�arccos�−mt�� at 0� t�1/m, and
�0, 	 ±� /2� at t1/m. We shall see shortly that each of the
unstable points �0, �1/2�arccos�−mt�� and �0, 	� /2� plays
an important role in this system.

Let us consider two typical cases of parametric autoreso-
nant excitation of a Faraday wave. In the first case one first
excites the wave at a constant frequency, so that the initial
values of the action and phase are in the vicinity of the stable
fixed point. Then, upon slowly reducing the driving fre-
quency, one keeps the phase locked, as our “particle” oscil-
lates in a potential well which slowly deepens with time, see
Fig. 7. In the second case one starts the autoresonant driving
from an almost zero wave amplitude. Here the saddle point
�I* ,�*�	�0, �1/2�arccos�−mt�� plays an important role. In-
deed, the stable manifold of this quasifixed point is along the
� axis. Therefore, no matter what the initial phase is, the
phase approaches, on a time scale O�1�, the saddle point. The
unstable manifold of this saddle point is along the I axis, so
I�t� will grow with time. Still, if I�t=0� is small enough, I�t�

FIG. 6. Breakdown of parametric autoresonance in an inviscid
fluid in the case of m=5.5mcr. The parameters are m=5.5, I�0�
=0.6, ��0�=0, and a zero initial detuning. Shown are the action I�t�
and the phase ��t� found numerically.
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remains small during this time scale O�1�. Therefore, phase
locking is always achieved at this stage, so the time interval
0� t�1/m can be called the “trapping stage.” Later on I�t�
grows significantly but, as we found numerically, the “par-
ticles” remain inside the �slowly expanding� separatrix I
=cos�2��+mt. As a result, the phase starts to perform large-
amplitude oscillation around the stable quasifixed point, and
phase locking persists.

One more alternative description of the system of equa-
tions �21� is in terms of the complex amplitude ��t�
=B�t�exp�i��t��:

i�t + �* − ����2 − mt�� = 0, �29�

where the subscript t denotes differentiation with respect to
the slow time. The long-time behavior of I* can be obtained
by looking at the asymptotic solutions of Eq. �29� at t→�.
For a solution such that ��� grows with time as a power law,
the leading terms are those in the parentheses. This immedi-
ately yields

���t�� 	 �mt�1/2, �30�

which corresponds to the leading term �when mt�1� of Eq.
�24�, and describes a phase-locked wave �here � stays close
to zero, see Eq. �25��. On the contrary, if ���t�� remains
bounded and small, the first term of Eq. �29� is balanced by
the last one, and we obtain

��t� = �0exp�imt2/2� , �31�

where �0���0�exp�i�0�=const. This solution corresponds to
an unlocked phase ��t�=�0+mt2 /2 and a constant amplitude
��0�. Of course, the phase of the wave �1�t�=��t�−mt2 /2,
which is defined by the ansatz �1�t�=A1�t�cos��1t+�1�t��
�where t is the physical time�, stays constant in this regime,
and is equal to �0.

We determined numerically, for several typical classes of
initial conditions, the critical value of m , m=mcr, which
separates the phase locking regime from the phase unlocking

regime �28�. At a fixed initial phase ��t=0�=0, mcr grows
with the initial amplitude B�t=0�, at least until the scaled
amplitude becomes of order unity, see Fig. 8. This result
agrees with those obtained by Fajans et al. �see Fig. 3 in Ref.
�27�� who presented them in terms of �cr versus �. When
starting from the stable quasifixed point: I�t=0�=1/2 and
��t=0�=0, we found that mcr	 4.963.

We also found mcr as a function of the initial phase, for a
given, and very small, initial amplitude, see Fig. 9. This de-
pendence is relatively weak. The largest mcr is obtained for
�=� /4, the smallest one for �=−� /4.

What is the signature of the special case m=mcr? At m
�mcr the phase oscillates in time. As m approaches mcr from
below, the onset of the phase oscillations is delayed more
and more, see Fig. 10. Now, at mmcr the phase initially
changes slowly and then rapidly escapes to infinity. As m
approaches mcr from above, the point of rapid departure of
the phase is delayed more and more, as shown in Fig. 10.
This suggests that, in the special case m=mcr the phase nei-
ther oscillates around a trend, nor departs from it. Instead,
the phase monotonically approaches � /2. Looking at the ef-
fective potential, shown in Fig. 7, one realizes that, in the
special case m=mcr, our “particle” neither oscillates in the
potential well �which would correspond to phase locking�,
nor escapes from the well �which would correspond to phase
unlocking�. Instead, the “particle” lands, at t=�, on the peak
of the potential at �=� /2. In the following we shall find the
asymptotic form of this special trajectory.

FIG. 7. The time-dependent potential V�� , t�, Eq. �28�, is shown
as a function of � for several consecutive times starting from t=0.
The scaled chirped rate m=0.1. The potential well at �	�*�t�
deepens with time starting from t=0. At 0� t�1/m there is a po-
tential barrier at �	�1/2�arccos�−mt� �denoted by the circle�,
which disappears at t	1/m. At t	1/m a new potential barrier
appears close to �=� /2 and heightens with time �denoted by the
asterisk�.

FIG. 8. The critical chirp rate mcr as a function of the initial
amplitude B�0� for ��0�=0.

FIG. 9. The critical chirp rate mcr as a function of the initial
phase ��0�, for a very small initial amplitude B�0�=10−6.
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B. Perturbative solutions

In this subsection we present three perturbative analytic
solutions which illustrate the basic features of parametric au-
toresonance: persistent resonant growth, capture into reso-
nance, and the limiting trajectory which separates between
phase locking and unlocking. In each of the three cases, a
local analysis around one of the quasifixed points of the sys-
tem is required.

1. In the vicinity of the stable quasi-fixed point

Let us linearize Eq. �26� in the vicinity of �=0. As dis-
cussed above, this requires either a small chirp rate m�1 or
a long time t�1. We obtain

�̈ + 4�1 + mt�� = m . �32�

We look for the solution in the form

��t� =
m

4�1 + mt�
+ ���t� , �33�

where the first term is the phase trend �25�. Neglecting
higher-order terms, we arrive at the Airy equation

��̈ + 4�1 + mt��� = 0, �34�

whose general solution is �29�

���t� = C1Ai�− � 2

m
�2/3

�1 + mt��
+ C2Bi�− � 2

m
�2/3

�1 + mt�� . �35�

Here Ai��� and Bi��� are the Airy functions of the first and
second kind, and C1 and C2 are constants depending on the
initial conditions. Using the large-argument expansion of
Ai�−z� and Bi�−z� �29�, where z� , we obtain

��t� 	
m

4�1 + mt�
+

A

�1 + mt�1/4sin�4�1 + mt�3/2

3m
+ �� ,

�36�

where A and � are new constants. The action I�t� can be
found using the second of Eqs. �22�:

I�t� 	
mt + 1

2
− A�1 + mt�1/4cos�4�1 + mt�3/2

3m
+ �� .

�37�

The first terms in Eqs. �36� and �37� are the systematic trends
�24� and �25�. The solutions �36� and �37� coincide, up to
notation, with the WKB solutions obtained in Ref. �7�. Fig-
ure 11 shows excellent agreement between the analytical so-
lutions �36� and �37� and numerical solutions.

2. Capture into resonance

Now we consider the case of driving a Faraday wave
starting from a very small amplitude and a large initial de-
tuning, that is far from resonance. Here one is interested in
the capture into resonance. In the case of external autoreso-
nance this phenomenon has been extensively studied by
Friedland �2�. In the case of parametric autoresonance this
phenomenon has not been addressed, although equations
similar to Eq. �22� were analyzed in Ref. �27� in the context
of the second-harmonic autoresonance in an externally
driven oscillator.

We start, in Eqs. �21�, at a large negative time t0�0, and
assume that the initial detuning mt0 is very large in the ab-

FIG. 10. Autoresonance and its breakdown for m very close to
mcr	4.963. The initial conditions are ��t=0�=0 and I�t=0�=1/2.
The dashed lines show the phase-locked solutions for the phase and
action for m just below mcr, while the solid lines show the phase-
unlocked solutions for m just above mcr.

FIG. 11. The phase ��t� �a� and the action I�t� �b� as functions
of time for m=0.2, ��0�=0 and I�0�=1/2. The asterisks mark the
asymptotic solutions given by Eqs. �36� �a� and �37� �b�. The solid
lines mark the numerical solutions.
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solute value, while the initial scaled amplitude B�t= t0� is
much less than unity. As long as B�t��1, one can neglect the
B2 term in the second of Eqs. �21�:

�̇ = cos�2�� + mt . �38�

This equation describes two distinct stages of the dynamics.
In the first stage t is large and negative, and �mt��1. There-
fore, the term mt is dominant, so �27�

� 	 ��t0� +
m

2
�t − t0�2. �39�

During this prelocking stage, the phase varies rapidly. The
second stage occurs roughly at −1/m� t�1/m. Here the
two terms on the right hand side of Eq. �38� are comparable.
As m�1, the duration of this stage is long compared with
unity, and the phase approaches, on a time scale O�1�, the
unstable quasifixed point

�*�t� 	
arccos�− mt�

2
−

m

4�1 − �mt�2�1/2 , �40�

where we have included the next-order correction in m. As
noted previously, this quasifixed saddle point ceases to exist
at t1/m; the correction term in Eq. �40� is invalid too close
to t=1/m. We call this regime “linear phase locking” stage.

Let us obtain the dependence of B on time in the prelock-
ing and linear phase locking stages. In the prelocking stage
��t� is given by Eq. �39�. Then the first of Eqs. �21� yields

B�t� 	 B�t0�exp��
t0

t

sin�m�s − t0�2 + 2��t0��ds� �41�

�the integral can be expressed through the Fresnel integral�.
At this stage B�t� oscillates rapidly, because of the rapid and
monotonic change of the phase. At the linear phase locking
stage, ��t�	�*�t� as given by Eq. �40�. Then, neglecting
higher-order terms in m, we arrive at the equation

Ḃ 	 B
1 − �mt�2 �42�

which yields

B 	 B2exp�1

2
�t
1 − �mt�2 +

arcsin�mt�
m

�� , �43�

where B2 is a constant determined by the initial conditions.
Equation �43� breaks down when the earliest of the two

events occurs: t becomes larger than 1/m, or B�t� becomes
comparable to unity, so that one cannot neglect the B2 term
in the second of Eqs. �21�. The phase starts to oscillate, while
the amplitude both oscillates and grows, see Fig. 12, and the
system enters the autoresonance regime.

Similar results are observed when starting from a small
amplitude and a zero initial detuning �that is, in exact linear
resonance�. Therefore, when the initial amplitude is very
small, and m� 1, phase locking is very robust.

3. Critical chirp rate and the limiting trajectory

As we have seen numerically, when m approaches the
critical value mcr, the phase � approaches � /2 at t�1. Let

us assume that, at a time t0 , � is already in the vicinity of
� /2 :�=� /2−��, where ���1. Linearizing Eq. �26�, we
obtain

��̈ − 4���mt − 1� = − m . �44�

To find the trend, we neglect the term ��̈. Therefore, at t
�1, we obtain ��	1/ �4t�, so

�*�t� 	
�

2
−

1

4t
. �45�

Using the second of Eqs. �22�, we obtain the respective trend
of I�t�:

I*�t� 	
mt

2
−

1

2
. �46�

At this stage we notice that Eqs. �45� and �46� describe, at
t�1, one of the unstable �saddle� quasifixed points of the
system: the one that appears close to t=1/m. This again
shows that adiabaticity holds not only at m�1, but also at
t�1.

Now consider small deviations from the unstable trends
�45� and �46�. Putting �=� /2−1/ �4t�−���t�, we again ar-
rive at the Airy equation for ���t�. Its general solution is
���t�=C1Ai��4m�1/3t�+C2Bi��4m�1/3t�, where C1 and C2 are
determined by the initial conditions. Assuming m1/3t�1, we

FIG. 12. The dynamics of the system in the linear phase locking
stage −1/m� t�1/m. The phase ��t� �a� and amplitude B�t� �b�,
found numerically, are shown by solid lines. The quasifixed saddle
point �*�t� �Eq. �40�� �a� and the amplitude �Eq. �43�� �b� are de-
noted by dashed lines. The initial conditions are t0=−400, ��t0�
=0, and B�t0�=10−6, the scaled chirp rate m=0.01. It can be seen
that, as B becomes comparable to 1, the linear theory breaks down.
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employ the asymptotics of the Airy functions �29�

Ai�z� 	
exp�− �2/3�z3/2�

2
�z1/4
, Bi�z� 	

exp��2/3�z3/2�

�z1/4

�47�

at z�1. The exponentially decaying term is negligible. The
exponentially growing term describes instability of the spe-
cial trajectory with respect to small perturbations. This insta-
bility occurs both at m�mcr �when the phase leaves the vi-
cinities of the saddle point and goes to the vicinity of the
stable quasifixed point�, and at mmcr �when the phase
locking terminates�. For the special trajectory, obtained for
m=mcr, the coefficient C2 must vanish, which brings us back
to Eqs. �45� and �46�, where we must put m=mcr. Now it is
clear that the asymptotic behavior of the �*�t� at m=mcr is
independent of mcr and, therefore, on the initial conditions.
On the contrary, the asymptotic behavior of I*�t� at m=mcr

does depend on mcr and, therefore, on the initial conditions.
Unfortunately, the local analysis does not enable one to find
the value of mcr analytically.

Figures 13 and 14 show the behavior of the system when
m is very close to �just below� mcr. Figure 13 shows that,
after a time O�1�, the phase follows the trend �45�, indepen-
dently of the initial conditions �and of the value of mcr�.
Figure 14 shows that, after a time of O�1�, good agreement
between I�t�, found numerically, and the trend �46� holds
until the time when the “particle” leaves the vicinity of the
unstable point and transfers to the vicinity of the stable point.

IV. CHIRPED FARADAY WAVES IN A LOW-VISCOSITY
FLUID

We now account for a small viscosity and briefly describe
the dynamics of the phase and amplitude of the primary
mode in the case of a slowly time-dependent vibration fre-
quency. The weakly nonlinear governing equations are ob-
tained by analogy with Eqs. �17�:

Ḃ = B sin�2�� − �B ,

�̇ = cos�2�� − B2 + mt , �48�

where t is the slow time as before. For ��1, there exists a
stable quasifixed point which describes autoresonant excita-
tion of the wave

B* 	 ��1 − �2�1/2 + mt�1/2,

�* 	
1

2
arcsin��� +

m

4�1 − �2 + mt�1 − �2�1/2�
. �49�

When ��1, Eqs. �49� become

B* 	 
1 + mt, �* 	
�

2
+

m

4�1 + mt�
. �50�

Figure 15 shows a projection on the �� ,B� plane of a three-
dimensional trajectory in the space of �, B, and t. One can
see phase locking and a steady growth of the wave amplitude
with time.

Figures 16 and 17 show two different regimes of au-
toresonant growth in the dissipative system. Shown in the
two figures are the primary mode amplitude versus time for
the scaled damping rates ���cr and ��cr, respectively. As

FIG. 13. Numerical solutions for the phase ��t�, for three dif-
ferent initial conditions, versus the universal asymptotics �45�, de-
noted by the dotted line. The solid, dashed-dotted, and dashed lines
show the phase dynamics when starting from ��0�=0 �here m
	mcr	4.963�, 1 /4 �here m	mcr	6.237�, and 1/2 �here m	mcr

	7.094�, respectively. I�0�=1/2 in all three cases.

FIG. 14. Shown is I�t� for m just below mcr	4.963. The solid
line shows the numerical solution, starting from I�0�=1/2 and
��0�=0. The dashed line shows the trend �46�.

FIG. 15. Parametric autoresonance in the presence of viscosity.
Shown is a projection of a three-dimensional trajectory in the space
of �, B, and t, upon the �� ,B� plane. The solid line shows a nu-
merical solution, the dashed line shows the trends �48�. After sev-
eral nonlinear cycles, the trajectory converges into a �slowly time
dependent� stable focus, which moves upwards. The parameters are
�=0.2, m=0.1, B�0�=0.8, ��0�=0.1, and a zero initial detuning.
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the initial detuning is zero, �cr=2/
5=0.89¯ here, see Eq.
�18�. Figure 16 shows decaying oscillations on top of the
amplitude growth, given by the first of Eqs. �49�. Figure 17
shows a nonoscillatory regime of the amplitude growth. Fig-
ure 18 shows breakdown of autoresonance when the chirp
rate m exceeds a critical value.

Similarly to the inviscid case, one can rewrite the govern-
ing equations �48� as a single equation for the complex am-
plitude �=B exp�i��:

i�t + �* − ����2 − mt − i��� = 0. �51�

Assuming a solution growing in time �that is, phase locked
solution�, we obtain, at t�1, B= ���	�mt�1/2, as before.

Equations �48� can be also rewritten as a single second-
order equation for ��t�:

�̈ + 2��̇ + sin�4�� + 2mt sin�2�� − 2� cos�2�� = 2�mt + m

�52�

�compare it with Eq. �26��. This equation is convenient for a
perturbative treatment in the vicinity of the stable quasifixed
point. For ��1, we can linearize Eq. �52� around �=0:

�̈ + 2��̇ + 4�1 + mt�� = 2��1 + mt� + m . �53�

Now we substitute ��t�=�*�t�+���t�, where �* is given by
the second of Eqs. �50�, and obtain a linear equation

��̈ + 2���̇ + 4�1 + mt�� = 0. �54�

Its approximate solution, at m�1 and ��1, can be written
as

FIG. 16. Parametric autoresonance in the presence of viscosity.
Shown is the amplitude B�t� versus time for a subcritical damping.
The solid line denotes a numerical solution, while the dashed line
shows the trend B*�t�, see Eq. �49�. The parameters are the same as
in Fig. 15.

FIG. 17. Parametric autoresonance in the presence of viscosity.
Shown is the amplitude B�t� versus time for a supercritical damp-
ing. The solid line denotes the amplitude B�t� found numerically,
and the dashed line denotes its trend B*�t�, see Eq. �49�. The pa-
rameters are �=0.9, m=0.1, B�0�=1, ��0�=0.25, and a zero initial
detuning.

FIG. 18. Breakdown of autoresonance in the presence of viscos-
ity. Shown are the amplitude B�t� and the phase ��t�, for m	4.4
�just above mcr� for the initial conditions B�0�=1 and ��0�=0.05,
and for �=0.1. One can see that, after a strong transient excitation,
the phase unlocks, and the amplitude decays.

FIG. 19. The phase ��t� �a� and the amplitude B�t� �b� as func-
tions of time in the presence of small viscosity. The parameters are
m=0.1, �=0.1. The initial conditions are ��0�=0.05 and B�0�
=0.95. The asterisks mark the analytical solutions, the solid lines
show numerical solutions.
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�� 	
Ae−�t

�1 + mt�1/4sin�4�1 + mt�3/2

3m
+ �� , �55�

where A and � are constants depending on the initial condi-
tions. The respective solution for B�t� is

B 	 �1 + mt�1/2 −
Ae−�t

�1 + mt�1/4cos�4�1 + mt�3/2

3m
+ �� .

�56�

These solutions are simple extensions of the nonviscous per-
turbative solutions. A comparison with numerical solutions is
shown in Fig. 19, and excellent agreement is observed.

In the viscous case the critical value mcr of the scaled
chirp rate m=� / ���1�2 depends on the scaled damping rate
of the wave �=� / ���1�. Figure 20 shows this dependence,
which we found numerically when starting at t=0 from the
stable fixed point of Eqs. �17� with �=0, that is from B*
= �1−�2�1/4 and �*= �1/2�arcsin���. One can see that, as �
increases, the critical chirp rate goes down monotonically. As
� approaches 1, mcr goes to 0. Notice that, once we return to
the physical �dimensional� critical chirp rate �cr and the

wave damping rate �, the dependence of �cr on �, at fixed �,
is not a power law.

Finally, we tested the accuracy of our reduced equations
�48�. We compared numerical solutions of Eqs. �48� with
numerical solutions of the unreduced equation of motion
�19� for the primary mode amplitude �1�t�, with a linear
damping term added. Rescaling the time �=�1t, and the am-
plitude �̂1= �k1�1� / �2
��, one can rewrite the unreduced
equation as

�̈̂1 + 2���̇̂1 + 10��̇̂1
2�̂1 − 6��̂1

3 + �̂1�1 + 4� cos�2� − m�2�2��

= 0. �57�

A typical example of this comparison is shown in Fig. 21,
and a fairly good agreement between the envelope of �̂1�t�
and the amplitude B�t� is observed.

V. DISCUSSION

This paper presented a theory of weakly nonlinear stand-
ing gravity waves, parametrically excited by weak vertical
vibrations with a down-chirped vibration frequency. We have
shown that autoresonance phase locking and a steadily grow-
ing wave amplitude can be achieved despite the nonlinear
frequency shift of the wave. For typical initial conditions we
have found the critical chirp rate, above which autoresonance
breaks down. When starting from a very small wave ampli-
tude, and slowly passing through resonance, phase locking
always occurs. We have obtained approximate analytical ex-
pressions for the time-dependent wave profile in different
regimes. We have demonstrated that each of the three quas-
ifixed points of the reduced dynamic equation, describing the
primary mode, plays an important role in the dynamics of the
system and/or in determining the critical chirp rate.

Parametric autoresonance in Faraday waves is a robust
phenomenon, and its experimental observation should not be
difficult. To test our theory, one should use a quasi-two-
dimensional tank with a low-viscosity liquid, and perform
measurements of the standing wave elevation as a function
of time. The long-term wave amplitude trend �see the first of
Eqs. �49��, and the critical chirp rate �see Fig. 20�, give ex-
amples of quantitative predictions of the theory that can be
tested in experiment. One such experiment is presently under
way �30�.

The applicability of the weakly nonlinear theory pre-
sented in this work is limited to weak forcing and weak
damping. Our analysis neglected higher order terms in �,
which include a nonlinear forcing �13�, a cubic damping
�13–15�, a small correction to the linear detuning/frequency
shift, a quintic conservative term �16�, etc. These terms can
be included in the theory of autoresonance in order to
achieve a better accuracy. Importantly, once these higher-
order terms are added to the constant-frequency model �Eq.
�17��, the nontrivial stable fixed point will exist only up to a
certain value of the frequency detuning �13–16�. Therefore,
in experiment, the autoresonant growth of the wave is ex-
pected to terminate when the �time-dependent� frequency de-
tuning comes close to the maximum value, for which the
nontrivial stable fixed point in the underlying constant-

FIG. 20. The critical scaled chirp rate mcr=�cr / ��2�1
2� versus

the scaled damping rate of the wave �=� / ���1�, as described by
Eqs. �48�. The initial amplitude and phase correspond to the stable
fixed point of Eqs. �17� with �=0.

FIG. 21. B�t� �the thick solid line� and �̂1 �the thin solid line�
versus time. The parameters are �=0.006, m=0.18, �=0.006,

�̂1�0�=B�0�=0.9, and �̇̂1�0�=��0�=0.
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frequency model still exists. The breakdown of autoreso-
nance is expected to occur at an amplitude smaller than the
wave-breaking amplitude, which is comparable to the wave-
length �31�.
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